A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factors
نویسندگان
چکیده
Pure culture of magnetotactic bacteria with high magnetosome yield has been achieved for only a few strains. The major obstacles involve the nutritional requirements and culture conditions of the cells. To increase cell density and magnetosome production, it is necessary to elucidate the physiological characteristics of a particular strain during cell growth and develop an appropriate artificial control strategy. Large-scale culture of Magnetospirillum gryphiswaldense strain MSR-1 was successfully performed for 48 h in a 42-L autofermentor, and several key physiological parameters were measured in real time. Maximal values of cell density (OD565) (19.4) and cell yield (dry weight) (4.76 g/L) were attained at 40 h. The key time point for cell growth and magnetosome formation was found to be 18-20 h. At this point, cells entered the log phase of growth, the maximal values of Cmag (1.78), iron content (0.47%), and magnetosome number (26 ± 3 per cell) were observed, superoxide dismutase (SOD) activity began to decrease more rapidly, ATP content dropped to an extremely low level (0.17 fmol), and reducing power (NADH/NAD(+) ratio) began to increase very rapidly. Excessive levels of dissolved oxygen (≥20 ppb) and lactic acid in the medium caused notable cytotoxic effects after 20 h. Artificial control measures for fermentation must be based on realistic cell physiological conditions. At the key time point (18-20 h), cell density is high and magnetosomes have matured. The process of magnetosome synthesis involves a high consumption of ATP and reducing power, and the cells require replenishment of nutrients prior to the 18-20 h time point. Culture conditions that effectively minimize dissolved oxygen accumulation, lactic acid content, and reducing power at this point will enhance magnetosome yield without obvious inhibition of cell growth.
منابع مشابه
Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1
Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and acting as carriers of enzymes, antib...
متن کاملExpression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.
To evaluate the expression patterns of genes involved in iron and oxygen metabolism during magnetosome formation, the profiles of 13 key genes in Magnetospirillum gryphiswaldense MSR-1 cells cultured under high-iron vs. low-iron conditions were examined. Cell growth rates did not differ between the two conditions. Only the high-iron cells produced magnetosomes. Transmission electron microscopy ...
متن کاملA novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1
Magnetotactic bacteria (MTB) are specialized microorganisms that synthesize intracellular magnetite particles called magnetosomes. Although many studies have focused on the mechanism of magnetosome synthesis, it remains unclear how these structures are formed. Recent reports have suggested that magnetosome formation is energy dependent. To investigate the relationship between magnetosome format...
متن کاملTranscriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense.
Genes involved in magnetite biomineralization are clustered within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Their transcriptional organization and regulation were studied by several approaches. Cotranscription of genes within the mamAB, mamDC, and mms clusters was demonstrated by reverse transcription-PCR (RT-PCR) of intergenic regions, indicating the presence of long...
متن کاملLarge-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density
BACKGROUND Magnetotactic bacteria have long intrigued researchers because they synthesize intracellular nano-scale (40-100 nm) magnetic particles composed of Fe3O4, termed magnetosomes. Current research focuses on the molecular mechanisms of bacterial magnetosome formation and its practical applications in biotechnology and medicine. Practical applications of magnetosomes are based on their fer...
متن کامل